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Abstract — Spacecraft enter a ‘safe mode’ to protect the vehicle 
when a potentially harmful anomaly occurs. This minimally-
functioning state isolates faults, establishes contact with Earth, 
and orients the vehicle into a power positive attitude until 
operators intervene. Though ‘safings’ are inherently 
unpredictable, mission teams build in time margin during 
operations to determine root causes and restore functionality. 
Planning and managing this margin is both critical and enabling 
on mission architectures dependent on near-continuous 
operability – such as a low-thrust electric propulsion mission.  

To better quantify the occurrences and severity of safe mode 
anomalies, the Jet Propulsion Laboratory (JPL) has assembled 
a database of safings from past and active missions.  Currently 
nearly 240 records are captured from 21 beyond-Earth 
missions, stemming from a collaboration between teams at JPL, 
Ames Research Center, Goddard Space Flight Center, and the 
Johns Hopkins University Applied Physics Laboratory. This 
paper discusses the event database, explores a statistical 
approach in modeling the occurrences and severity of safing 
events, presents a simulation technique, and details 
recommendations and future work to benefit future concepts.  
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1. INTRODUCTION AND MOTIVATION 

Since the development of the Galileo mission1, spacecraft 
designers have implemented an onboard, self-detecting 
 

1 Galileo has the first recorded (and located) event on November 28, 1989.  

failsafe mode. These ‘safe modes’ are architected to 
guarantee a vehicle can wait in a safe operating state until 
ground operators can recover and restore nominal operations. 
The characteristics of this safe state are common across 
missions: isolate faults to prevent further propagation, 
establish and maintain communications with Earth, orient the 
vehicle in a power-positive and thermally stable 
configuration, and be able to maintain this state indefinitely. 
Though some in-flight safe mode entries are planned, such as 
a reboot to initialize a flight software update, the majority of 
‘safings’ are unpredicted events or conditions that trigger a 
system-level fault protection response.  

This research considers the subset of anomalies that result in 
safe mode entries. Spacecraft fault management is designed 
to handle a spectrum of faults and anomalies seen across 
software, hardware, and payloads. When an anomaly is 
detected, fault protection will first work to isolate the issue at 
the component level. If the fault persists, subsystems or 
instruments can be isolated and marked as ‘sick’. At this tier, 
the issue will be noted in the next communications pass and 
the vehicle will continue with nominal operations. However, 
further fault containment failures will trigger a system-level 
response, often leading to a safe mode entry. Safing events 
stand apart from other flight anomalies because of the 
technical investigation and engineering and management 
team effort involved in the recovery process. The significant 
time spent to recover from each safing culminates into a 
significant impact on overall spacecraft rates of operability.  

Each safing event requires a coordinated and methodical 
response to recover the spacecraft. Spacecraft teams work to 
diagnose and understand the issue, ensuring that the anomaly 
is not persistent and the planned operations can be resumed. 
The cumulative impacts of safing events are realized when 
the vehicle is in flight. To manage this, margins for 
operational outages are prepared throughout the development 
phases when designing trajectories, planning critical events, 
and developing science campaigns. To better quantify these 
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margins on future mission concepts, a statistical approach is 
applied to safing data from past and present missions to 
model event occurrences and recovery durations. 

Motivation 

Initial research into modeling safing events was funded by 
the proposed Asteroid Robotic Redirect Mission (ARRM). 
ARRM’s concept baselined a 40 KW solar electric 
propulsion (EP) system to reach asteroid 2008 EV5. [1]  Low-
thrust EP technologies are uniquely enabling compared to 
chemical propulsion systems because they allow the flight 
system to achieve large changes in spacecraft velocity on a 
comparatively small propellant mass.  JPL has flown EP 
technologies on the Deep Space 1 (DS1) and Dawn missions, 
and has baselined their use on the planned Psyche mission 
and the Next Mars Orbiter (NeMO) mission concept. [2] [3] 

EP engines produce low thrust levels, requiring near-
continuous periods of operability for maneuvers. Trajectories 
may require weeks or months of thrusting at a time, 
increasing the likelihood that a safing anomaly will interrupt 
the planned maneuver.  For example, Dawn arrived at Ceres 
26 days late from a four day safing event and thrust outage. 
[4] Similar to DS1 and Dawn, ARRM trajectory designers 
performed ‘missed thrust analyses’ to build robustness into 
maneuvers. This robustness is essential due to the non-
linearity of low thrust trajectories. These analyses model the 
impact of anomalies by injecting multi-day thrust outages 
into the planned trajectory and recalculating new solutions. 
While the missed thrust analyses give confidence a vehicle 
will reach the final destination, the flight system may realize 
lower system-level margins, such as requiring more 
propellant or increasing the time-of-flight. [5] [6] 

EP missions are not the only architectures sensitive to safing 
events. Time-constrained missions, such as Europa Clipper, 
could be impacted by missed maneuver opportunities and 
brief science windows. Clipper will complete up to 45 flybys 
of Europa on a 14.2 day orbit cadence. The mission uses a 
chemical propulsion system to adjust the trajectory as the 
spacecraft travels within 25 km of the icy moon’s surface. A 
safe mode entry could cause missed maneuvers, introducing 
a non-zero probability that Clipper could impact Europa, 
require a redesign of its trajectory, or miss science 
observations over a region of the icy moon that may not be 
revisited within the mission’s lifetime. [7] 

Missed thrust analyses on DS1 and Dawn were done using 
engineering best estimates for periods of inoperability. [6] To 
improve on this, ARRM sought to leverage nearly thirty years 
of beyond-Earth flight data. However, no comprehensive 
database, literature, or analysis of events was located. Thus 
began the task to create and explore this database. 

2. SAFE MODE EVENT DATABASE 

The safe mode event database captures nearly 240 safe mode 
entries from 21 beyond-Earth missions, summarized in Table 

1. 196 of the records are from anomalous events throughout 
a mission’s primary and extended phases. 12 of these records 
are ‘cascading’ events, where the spacecraft re-entered safe 
mode before recovery from the previous event was complete. 
Of these 196, 151 of the events have sufficient details and 
context to reconstruct the diagnosis and recovery timeline. 
Ancillary data is also recorded for each event including 
mission phase, vehicle location, and anecdotal information 
from the recovery process. Root causes, as specified and 
recorded by each mission team, are captured and binned into 
software, hardware, operations, space environments, or 
unknown categories. Unknown events are anomalies where 
root cause is undeterminable by the mission team. 

The event database has been collected through a 
collaboration between JPL, NASA’s Goddard Space Flight 
Center, NASA’s Ames Research Center, and the Johns 
Hopkins University Applied Physics Lab – please see the 
Acknowledgements section. Research is ongoing to capture 
additional details and to locate records for missions not yet 
included in the database.  

Table 1. The safe mode database captures events from 
168 years of cumulative flight time on missions 

throughout the solar system. 

Mission Launch  Destination 

Galileo 1989 Jupiter 

Mars Global Surveyor 1996 Mars 

Cassini 1997 Saturn 

Deep Space 1 1998 9969 Braille 

Mars Climate Orbiter2 1998 Mars 

Mars Polar Lander2 1999 Mars 

Stardust 1999 81P/Wild 

Genesis 2001 Earth Sun L1 

Mars Odyssey 2001 Mars 

Spitzer (Telescope) 2003 Earth Trailing 

Deep Impact 2005 Tempel 1 

Mars Reconnaissance Obiter 2005 Mars 

New Horizons 2006 Pluto 

Dawn 2007 Vesta, Ceres 

Phoenix2 2007 Mars 

Kepler (Telescope) 2009 Earth Trailing 

Lunar Reconnaissance Orbiter 2009 Moon 

Juno 2011 Jupiter 

Mars Science Laboratory2 2011 Mars 

Mars Atmosphere and 
Volatile Evolution 

2013 Mars 

OSIRIS-REx 2016 Bennu 
 

2 Cruise phase of mission only  
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Event Recovery Timeline 

The severity of a safing event is realized as an operational 
impact, requiring time to diagnose and recover the spacecraft 
before resuming the nominal mission sequences. To capture 
these details, a standardized timeline structure provides 
homogeneity across different missions. Figure 1 identifies the 
six milestones recorded for each event in the database: 

1. Safe mode event – Safe mode entry asserted onboard 

2. Safing realized – Ground operators receive the first 
indication of safe mode entry during a scheduled 
communications pass 

3. Recovery start – Start of command execution to  restore 
functionality as part of the planned safe mode recovery 
procedures (subjective milestone, defined by each 
mission) 

4. Recovery complete – Spacecraft restored to a nominally-
operating state, releasing all safe mode constraints 
(subjective milestone, defined by each mission) 

5. Nominal operations resume – Restart nominal mission 
sequences and begin thrusting (if applicable) 

6. Science operations resume – Science sequences resume 
after restoring instrument functionality (if applicable) 

The timeline is agnostic to each spacecraft’s location and 
does not immediately reflect the impact of round trip light 
time (RTLT) on the timeline periods. RTLT can be on the 
order of hours, and accumulates as a mission executes 
required round-trip command sessions through the recovery 
process. Post processing can estimate the impact of RTLT 
using the mission’s ephemeris from the day of the event. 

Definitions 

The timeline in Figure 1 is used to define three important 
periods used in the modeling and simulation of safing events: 

Time between events is the elapsed time between two safe 
mode event occurrences. Since the flight durations of the 
missions in the database range from months (Mars Science 
Laboratory, etc.) to nearly two decades (Cassini), elapsed 
time provides a more consistent and applicable metric than 
events per year.  

Recovery duration – highlighted in the green box below the 
timeline – is the elapsed time it takes the mission team to 
diagnose and complete initial recovery. This period 
encompasses both subjective and objective recovery periods. 
When sharing their mission’s safing data, many teams 
indicate that there was “no rush” or that recovery “could have 
been faster if needed”. Only a handful of these anecdotal 
notes are quantitatively recorded in the database research. As 
a result, the modeled recovery duration may overestimate the 
recovery time if a future team needs to recover quickly.  

The inoperability period – also highlighted below the 
timeline – captures the overall time impact of a safing event. 
The spacecraft is defined as inoperable when not executing 
the planned mission sequences or is inhibited from thrusting. 
Outside of this period, the spacecraft is considered operable 
and maneuverable. Summing all of the inoperability periods 
over a mission’s full duration gives the net inoperability 
rate, so the mission’s operability rate is therefore 1 minus 
the inoperability rate.  

3. MODELING OCCURRENCES AND RECOVERIES 

Initial data exploration and model development techniques 
have been applied to the event database to characterize top-
level behaviors of the data and identify candidate models for 
further investigation. After fitting and validating these 
models, the selected model becomes part of a tool that 
enables portability of the mission-specific data to future 
architectures. Both time between events and recovery 
durations are investigated in this effort. Different statistical 
distributions are fit to the empirical data to look for trends 

1. Safe 
mode 
event

Discovery 
delay (pass 

cadence)

Investigation, analysis, 
and corrective action

Human 
factors

Command: 
Safe mode 

exit

Command: 
Restore nominal 

operations

Command: 
Restore science 

sequences

2. Safing realized 
at comm contact

3. Recovery 
start

4. Recovery 
complete

5. Nominal 
operations (and 

thrusting) resume

6. Science 
operations 

resume

Time
Recovery duration
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Figure 1. The safing event timeline is the framework for capturing anomaly details. The black lines are milestones and 
the colored blocks are periods of action. Blue periods are project specific and are quantifiable, testable, and can be 

levied through requirements on future missions. Green periods are statistical, derived from this research. The orange 
period encompasses anecdotal factors, such as days off, risk posture, recovery urgency, comm pass schedules, etc. 
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and represent the raw data in meaningful ways. The initial 
modeling is based on five foundational assumptions: 

 All missions are equal and identically distributed – 
Class, cost, launch year, destination, complexity, 
instruments, propulsion type, and other factors are not 
evaluated. 

 All events are in the same population – Data is lumped 
into common datasets, meaning different numbers of 
events between missions are not considered. All events 
follow the same natural process. 

 All events are random and independent – Variations in 
elapsed time-of-flight variations are not considered 
(events that might be more common early in the mission) 
and past events have no influence on future events.  

 All events are equal – Influence of root cause, system 
complexity, and other factors are not considered in 
recovery durations. 

 All recoveries are perfect - Upon recovery, the 
spacecraft has the same probability of safing again as it 
did prior to the event. 

These assumptions provide a starting point for the initial 
investigation and model development. Lumping the time 
between events and recovery duration data points into 
independent and identically distributed populations creates 
large datasets that can be assessed for statistical significance. 
However, the appropriateness of these assumptions needs to 
be verified and potentially confounding variables will require 
further analysis. The Recommendations and Forward Work 
section discusses future efforts to test these assumptions and 
understand their influence on the results. 

Developing the Datasets 

Datasets for analysis and modeling are assembled directly 
from the safing event database with no manipulation unless 
explicitly noted. Following the assumption that all missions 
and events are equal and from the same sample population, 
all valid data points from all missions are combined into 
single, large datasets. Though the motivation of the research 
comes from missed thrust analyses, the initial inspection 
shows no significant observed difference in behavior of 
safing events on the two EP missions (Dawn and DS1) versus 
the other missions in the database. Histograms of the time 
between events and recovery duration datasets are in Figure 
2, overlaid with best-fits (discussed in the next subsection).  

The time between events dataset is first organized into 
mission-specific subsets by calculating the elapsed time 
between unplanned safing events within a mission’s flight 
duration. This methodology does not consider the impact of 
other factors, such as root cause, occurrences of planned safe 
mode entries, or if the mission transitions between phases. 
This process treats cascading events (discussed previously) 
as a single data point since nearly all of the cascading events 
happen within a day of the first event. Elapsed time from 
launch to the first event is included as a valid elapsed time. 
Once each mission’s time between events subset is 
calculated, records from all missions are combined to 
assemble the full time between evets dataset. 

The recovery duration dataset is assembled directly from the 
recovery timelines associated with each safing event. Similar 
to time between events, this process ignores the impact of 
other factors and treats cascading events as a one duration. 
Some specific recovery duration data points are excluded; 
One multi-month safing event and all Galileo recovery 
duration data is not evaluated per specific recommendations 
from team members involved on those projects.  
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Figure 2. Histograms of both datasets are shown with fitted Weibull distributions. The longest time between events 
record is about 4.3 years (left), while no included event had a recovery duration longer than 10 days (right). 
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Data Modeling and Distribution Fitting 

To model the datasets in Figure 2, several different statistical 
distributions were applied and compared against the 
empirical data. Using the histograms as a starting point, both 
datasets were compared to the normal, log-normal, 
exponential, and Weibull distributions. This evaluation was 
done using the quantile-quantile (q-q) plots shown in Figure 
3. The q-q plot is a technique where two distributions are 
compared graphically to investigate whether they come from 
similar populations. If two distributions come from the same 
population, then the two datasets should closely overlap. 
Both the time between events and recovery duration datasets 
(blue dots) were compared to theoretical distributions 
(straight red lines), as illustrated in the four sub plots of 
Figure 3. Both the normal and lognormal distributions fit 
parts of the data, but quickly diverge. The exponential and 
Weibull distributions have excellent closeness-of-fit for the 
full datasets, with the Weibull ultimately providing a slightly 
better representation.  

The equation of the Weibull probability distribution function 
(as plotted in Figure 2) is given in Equation 1, where k is the 
shape parameter and λ is the scale parameter. 

            𝑓(𝑥; 𝑘, 𝜆) =
𝑒     𝑥 ≥ 0

  
0                                 𝑥 < 0

              (1) 

The Weibull is commonly used in reliability and failure 
engineering and is fully defined by the scale and shape 
parameters. The scale defines the magnitude of the horizontal 
axis value, while the shape gives insight into the behavior of 
the sample population. The similarities between the 
exponential and Weibull seen in Figure 3 are not surprising; 
When the Weibull shape parameter is 1, it mathematically 
reduces to the exponential distribution. This extra parameter 
gives the Weibull an additional degree of freedom to better 
fit the data. When the Weibull shape is 1 (exponential), it 
indicates that the event rate does not change as a function of 
time. A shape less than 1 indicates a decreasing event rate 
over time, while a shape greater than 1 highlights an 
increasing rate. 

The histograms in Figure 2 are shown as cumulative 
distribution functions (CDFs) in Figure 4. The empirical data 
(which falls in the same x-axis location as the histograms) is 
shown in various colors to represent the contributions each 
mission anonymously. Since CDFs show cumulative 
probability, the empirical data is distributed evenly on the y-
axis and is overlaid with the integral of the Weibull fits. The 
time between events CDF shows there is a 90% probability 
the next safing will occur within ~1.6 years of the previous 
event. Similarly, there is a 90% probability that the recovery 
duration of any event will be ~5.1 days or fewer.  
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Figure 3. Quantile-quantile plots visually compare the time between events dataset (y-axes) against the theoretical 
quantiles of four distributions (x-axes). Closeness-of-fit between the empirical data (blue dots) and the theoretical 

distribution (straight red line) is inspected. The same process is also done for the recovery duration dataset. 
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Figure 4. The Weibull fits for the time between events CDF (top) and the recovery duration CDF (bottom) closely match 
the empirical data.  The colors anonymously highlight the contribution of each mission to both datasets, with totals 

shown in parentheses. 5 missions have no locatable recovery duration data.  
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The Weibull parameters for the time between events and 
recovery duration datasets are found using MATLAB’s 
Weibull maximum likelihood estimator (wblfit) and are 
shown in Table 2. 

Table 2. Weibull parameters fit to the empirical data 

Distribution Scale  Shape 

Time between events (years) 0.62 0.87 

Recovery duration (days) 2.46 1.14 
 

Though the Weibull was selected due to the closeness-of-fit 
to the empirical data, the calculated parameters provide initial 
insight. Both distributions have a shape relatively close to 1, 
highlighting a near constant occurrence rate and confirming 
the similarities to the exponential distribution seen in Figure 
3. The time between events shape of 0.87 indicates a slight 
decrease in the day-to-day likelihood of safing again. This 
could be explained by team operations and procedures 
becoming more routine and robust over time. The recovery 
duration shape of 1.14 highlights an increasing recovery rate 
each day after event entry. This may be due to initial 
difficulty in securing communications pass time immediately 
after discovery, and could represent the process of mission 
teams gathering data and working to better understand the 
anomaly over time.  

The most significant impact of the calculated Weibull fits is 
the portability of the data for future use. With only the shape 
and scale parameters, a pseudo-random number generator can 
be used to return Weibull-distributed times between safing 
events and recovery times. This allows the safing data to be 
leveraged in simulations and mission design independent of 
the raw datasets. While the Weibull parameters will change 
as more missions are included, deviations from the 
parameters presented here should be relatively minor due to 
the comparatively large sample size of both datasets.  

4. APPLICABILITY TO FUTURE MISSIONS 

Future missions can combine Weibull parameters with 
mission specific details to begin to quantify the cumulative 
impact of safing events on their architectures. This process 
addresses architecture enabling assumptions during mission 
formulation, such as depending on a minimum operability 
rate or planning for finite time at a destination. To illustrate 
the potential use in mission design, a simulation methodology 
helps to quantify the cumulative impact of safing events over 
a mission’s life. When driven by a Monte Carlo front-end, the 
outputs of each simulation are used to generate a probability 
distribution of the Minimum Operability Rate (MOR). 
Analyzing the MOR distribution allows mission designers to 
compare risk to performance, illustrating likelihood of 
achieving an overall operability rate or better over the 
mission’s full duration. Findings can also be valuable to 
probabilistic risk assessments of spacecraft reliability and 
performance. 

A flowchart of the simulation methodology is shown in 
Figure 5. The simulation makes use of a Weibull-based 
pseudo-random number generator (wblrnd in MATLAB) 
based on the distribution parameters found in the analysis. 
Both the first and subsequent safing occurrences are 
determined using the time between events Weibull fit. When 
an event occurs, the inoperability period is found by summing 
the discovery delay, recovery duration from the Weibull fit, 
and the time to restore nominal operations. The discovery 
delay block accounts for pass length, where an anomaly may 
be realized near-instantly if it occurs during a scheduled pass. 
After totaling the inoperability period, the simulation then 
predicts the next safing occurrence and checks if the next 
entry is considered a cascading event. When a cascading 
entry occurs, the simulation adds the previous, interrupted 
recovery duration to a re-simulated inoperability period for 
the cascading safing entry. Multiple cascades are possible. In 
the simulation, the cascading event occurrences are recorded 
as single events and single, potentially longer recovery 

n-simulation Monte Carlo

Simulation inputs:
Communications cadence
Time to restore operations
Baseline mission duration

Weibull parameters

First safing event:
Time between 
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Cascading 
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Time-of-flight impacts

Time-of-flight function:
 Trajectory missed thrust
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Figure 5. The simulation process enables performance modeling of a candidate mission architecture.  This 
methodology combines the Weibull fits with mission-specific details to investigate minimum operability rates.   
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durations in the outputs. Metrics and impacts of cascades are 
noted separately in the outputs. 

Following a single event’s inoperability period, the 
simulation enters a time-of-flight function. This interface 
allows external tools, such as trajectory optimization 
software, to quantify impacts to the planned mission duration. 
For low-thrust mission architectures, the cumulative 
additional time-of-flight from the safing events may be 
significant enough that additional events could occur. The 
simulation will continue until the next safing event occurs at 
a point in time beyond each simulation run’s full mission 
duration. 

Simulating a Candidate Mission 

A mission with a continuous multi-year thrusting phase is 
simulated using a Monte Carlo model in MATLAB. The 
inputs used in the simulations are shown in Table 3. Since no 
specific trajectory is under consideration, a 4 hour pass every 
three days and a 1:1 time-of-flight increase are baselined. 

Table 3. Simulation parameters for the sample mission 

Metric Value 

Baseline mission duration 6 years 

Discovery delay / Pass cadence Pass every 3 days 

Pass length 4 hours 

Time to restore nominal operations  12 hours 

Time-of-flight function increase, 
relative to inoperability period 

1:1 
 

One million simulations were performed in the model, 
totaling around 9 million safing events shown in Figure 6. 
With the 1:1 time-of-flight function, time-of-flights increased 
up to 6.24 years (99.7th percentile). The left histogram 
indicates that between 0 and 20 events (99.7th percentile) are 

possible during the mission duration, while 6 – 11 events are 
most probable. The right histogram shows the range of 
simulated inoperable periods from each safing entry. No 
durations are less than 12 hours, with the peak around 3.5 
days; this is driven by the simulation inputs for discovery 
delay and command time to restore nominal operations. The 
right tail is driven by the recovery duration Weibull fit, 
decaying to an inoperable period of 14 days (99.7th 
percentile).  

Over the Monte Carlo runs, the cumulative inoperability 
period of the simulations ranged from 0 to 88 days (99.7th 
percentile). The overall operability rate distribution is shown 
as a survivor function in Figure 7. For this simulation, the 
distribution shows all simulation runs converged above a 
MOR of 94%, descending to an expected near-zero likelihood 
of achieving a 100% operability rate. The 99.7th percentile, 
marked by the green star, maps to a 96.1% MOR. This is 
equivalent to at least 350.8 days of operability or no more 
than 14.2 days of inoperability per year. The 95th percentile 
lies at a 97.1% MOR, about 10.6 days of inoperability per 
year.  

While the operability rates presented here will change as 
investigations apply mission-specific constraints, these 
simulations begin to bound the expected operability rates of 
beyond-Earth spacecraft. Coupled with the Weibull fits, this 
simulation methodology provides valuable insight into 
plausible vehicle operability rates early in the formulation 
process. A design team is able to target a desired operability 
rate, quantify the likelihood of achieving that rate, and 
compare the results against project risk posture and 
performance margins.  
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Figure 6. The distribution of total mission safings (left) peaks at 8 to 9 events, while the tail of the distribution of the total 
inoperable period of each safing (right) has recovery durations that extend beyond 30 days due to cascading events. 
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Sensitivity Investigation 

To investigate sensitivities in MOR, the Monte Carlo model 
is used to look at mission simulations with durations between 
one and ten years and with a discovery delay ranging from 
one pass per day to one pass per week. The time to restore 
nominal operations is kept constant at 12 hours per event, the 
pass length is 4 hours, and the time-of-flight function remains 
at a 1:1 duration increase. The results are shown in Figure 8. 

The sensitivity investigation shows that MORs are plausible 
from 89% to 97% (99.7th percentile) depending on mission 
duration and communications cadence. Decreasing the 
discovery delay with more frequent passes results in notable, 

multiple percent increases in MOR. More generally, the 
sensitivity analysis shows a driving relationship between 
MOR and baseline mission duration. Shorter missions have 
comparatively lower MORs when evaluated at these high 
percentiles. While shorter missions will have a higher 
percentage of simulations with no safing events, the 99.7th 
and 95th percentile MORs of shorter missions are dominated 
by simulation runs with many safing events. In these 
situations, the simulation duration is sufficiently short such 
that long periods between events will fall outside the 
simulation’s mission duration and are unable to ‘boost’ the 
MOR percentiles. Finally, increasing the time-of-flight 
function beyond a 1:1 impact results in slightly higher MORs, 
since the baseline mission duration is effectively increased. 
However, there may be other impacts to vehicle margin and 
resources that would be quantified through other tools. 

5. RECOMMENDATIONS AND FORWARD WORK  

The analysis, modeling, and sensitivity results lead to initial 
recommendations in managing inoperability period margin 
on future mission architectures. Previous publications on 
managing margins for low-thrust missions have highlighted 
the sensitivities between cost, propellant mass, flight time, 
and launch vehicle selection. [5] However, assumptions for 
missed thrust periods have traditionally been modeled as 
overall system performance rates (such as 95% duty cycle on 
Dawn) because the tools and data for deriving quantitative 
insights were not yet available. [6] With the foundation of the 
safing event database, future mission teams can use the 
Weibull fits and simulation methodology to develop 
confidence in minimum expected operability rates of their 
own architectures.  

Figure 7. The shape of the distribution is a convolution of the simulation inputs with the Weibull distributions. 94.2% 
is the lowest observed MOR, and 0.08% of the simulations had a 100% operability rate. 

Figure 8. MOR is sensitive to baseline mission duration, 
with the shortest missions expecting a MOR above 89%. 
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Overall, this body of work provides key takeaways that can 
begin to bound the behavior and impact of safing events on 
future mission architectures: 

 Safing events are plausible on missions of all types, 
classes, destinations, and architectures with no observed 
difference between electric and impulsive propulsion 
missions. 

 The mean of the time between events Weibull fit is about 
three events every two years. No included mission has 
recorded a recovery duration longer than 10 days, with 
90% of the records under ~5.1 days. 

 Exploring MOR distributions through simulation 
establishes a tailorable methodology to understand a 
vehicle’s performance based on the Weibull fits. 

 MOR is sensitive to communications pass cadences on 
missions of all lengths, allowing performance margin to 
be bought when it is needed 

Further Investigations 

The analysis and findings presented here are the first 
exploration of the records captured in the safing event 
database. Both the Weibull modeling and simulation 
techniques will continue to undergo a validation process to 
ensure that the outputs are appropriate, accurate, and best 
represent the collected mission data.   

Processes to improve the interpretation and inclusion of all of 
the event records are ongoing. Recovery durations may 
decrease slightly when the full impact of round trip light time 
is measured and factored in. However, insufficient data has 
been located on the number of round-trip command sessions 
used on past missions. Techniques are being developed to 
represent missions with no safing events (such as GRAIL) 
and to include events that were explicitly excluded per 
recommendations from those mission teams. The impact of 
statistical censoring on the datasets has not been fully 
evaluated, which will factor in the time between a completed 
mission’s last event and end-of-mission, or represent current 
operable periods on ongoing missions that may or may not 
have a future event. 

Another primary focus will revisit the initial assumptions to 
test the value of developing methodologies to improve the 
representations of the raw dataset. While the assumptions that 
all data is identically distributed and independent are 
simplifications of each mission, all missions studied here 
were designed to survive and operate as beyond-Earth 
spacecraft. Though their top-level objectives are diverse, 
these vehicles share many common architectural elements. 
Thus, developing and validating new conclusions may not 
reveal significantly deeper insight than conclusions derived 
under the initial assumptions.  

Analysis of the datasets are expanding beyond the lumped 
Weibull fits. Binning methods are used to create separate 

probabilistic distributions within the datasets, such as 
comparing trends between primary and extended missions, 
cruise and orbit, etc. Exploring variations in ancillary factors 
such as destination, cost, time-of-flight, and root cause 
provides a first look into trends and differences. Beyond 
binning, statistical techniques will be applied to measure the 
influence and relationships between missions in each dataset. 
Confidence intervals can be applied to the Weibull 
distributions, and mixed Weibull distributions could improve 
the closeness-of-fit to the outliers seen in the q-q plots. 
Hypothesis tests such as the Kolmogorov-Smirnov, t-test, or 
chi-square test can look for statistical connections within the 
datasets. These questions are the beginning of understanding 
the ‘weight’ of each mission on the resulting distribution fits. 
While binning creates an absolute sorting, weighting 
techniques could be applied for more tailored simulations. 
For example, the NeMO mission concept could consider 
Mars orbiter data more significantly than others.  

The simulation methodology will evolve with database and 
dataset improvements. Integration of trajectory software, 
such as MALTO, through the time-of-flight function is a 
major focus. While vectors of time between events and 
recovery duration values can be generated and exported to 
existing tools, closed-loop interfacing with trajectory 
optimization tools can fully capture the impacts of discovery 
delays, round trip light time, and cascading safes. While the 
inclusion of trajectory optimizers will slow down the speed 
of the Monte Carlo, the simulations are easily parallelized for 
high-performance computing environments. 

Finally, the event database will continue to grow as new 
missions are added and missing records are located. While 
the dates of safing event entries are relatively straightforward 
to locate through records and interviews, only half of the 
missions have recorded recovery durations for all of their 
safing events. Beyond this, five of the missions have no 
recovery duration for any events, and nearly every safing 
record is missing various details related to the safing event 
timeline. While different mission practices, lost records, and 
retired personnel mean that some of this data will never be 
locatable, the authors welcome assistance in verifying and 
growing the database. 

6. CONCLUSIONS 

Safe mode events are the predominant contributor to periods 
of spacecraft inoperability. Safings consume mission 
resources to diagnose, recover, and prevent further vehicle 
faults. Exciting mission architectures, such as the NeMO 
concept, the planned Psyche mission, and Europa Clipper are 
sensitive to the cumulative impact of safing events on the 
spacecraft’s planned minimum operability rate. To better 
understand and quantify this risk, a comprehensive database 
of spacecraft safe mode events from past and present 
missions has been collected, stemming from a collaboration 
between JPL, NASA’s Ames Research Center, NASA’s 
Goddard Flight Center, and the Johns Hopkins University 
Applied Physics Laboratory. 
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Initial exploration and analysis of the events in the safing 
database highlights novel research. A standardized timeline 
is introduced to provide homogeneity in collecting detailed 
records between missions. Several initial assumptions are 
applied, allowing data from all missions to be combined in 
two large datasets for elapsed time between events and 
recovery durations. Various statistical fits are tested against 
the empirical data, with Weibull distributions providing the 
best closeness-of fit. The shape and scale parameters of the 
two Weibull distributions are discussed and presented to 
enable portability of the datasets beyond the raw data. 

These parameters and other mission-specific details are 
applied in simulations driven by a Monte Carlo model. A 
candidate six year mission with realistic operations variables 
shows a minimum operability rate (MOR) of 96.1% is 
plausible at the 99.7th percentile. A brief sensitivity 
investigation highlights the range of plausible MORs by 
varying the baseline mission duration and pass cadences. The 
investigation shows MORs up to 97% (99.7th percentile) are 
achievable through realistic optimizations of the spacecraft 
design and operations plan. In future applications, trajectory 
optimization and other tools can be interfaced through 
simulation’s time-of-flight function to develop high-fidelity, 
mission-tailored MOR distributions. 

Some exploratory work remains to improve interpretation of 
records in the database. Future investigations will improve 
the modeling and simulation by revisiting the initial 
assumptions and applying different statistical techniques to 
validate the work presented here. This includes testing 
hypotheses concerning event and recovery behaviors, 
uncovering potential sub-groupings in the event database, 
and exploring alternative modeling approaches. 

Finally, this paper is the first of many investigations resulting 
from the records in the safing event database. Improved 
understanding of the occurrence and severity of safing events 
will be valuable to future missions, especially those enabled 
by electric propulsion architectures or time-constrained 
operations. Recommendations are presented to guide future 
mission architects, trajectory designers, and spacecraft 
operators as they model and predict the performance of their 
systems. 
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